05 Мар 13 Факторы, влияющие на эффективность грохочения
Главными технологическими показателями процесса грохочения материала являются: производительность грохота, «замельченность» надрешетного продукта и эффективность грохочения. Значение эффективности грохочения определяется и обуславливается действием ряда факторов, которые можно разделить на две основные группы: I. Факторы, зависящие от физико-механических свойств грохотимого материала (относительный размер зерен в исходном питании; форма зерна, влажность материала и т. д.); II. Конструктивно-механические факторы (размеры грохота и режим его эксплуатации). Рассмотрим факторы первой группы. 1. Влияние относительного размера зерна на эффективность грохочения.
При встряхивании короба в слое зерен, лежащем на сите наблюдается процесс сегрегации (расслоение по крупности), способствующий прохождению зерен нижнего класса к поверхности сита и их прохождению через отверстия. Зерна, диаметр которых меньше чем 0,75L, легко проходят через слой материала, достигают поверхности сита и проходят через его отверстия. Такие зерна принято называть «Легкими». Количество этих зерен не виляет на эффективность рассева материала. Зерна, диаметр которых приближается к диаметру отверстия сетки (0,75l<d<l) могут испытывать определенные трудности при прохождении через слой материала и отверстия сета. И эта трудность прохождения прогрессивно возрастает по мере приближения диаметра зерен к величине отверстий сита. Такие зерна называют «трудными». Зерна диаметром больше отверстия сита, но меньше его полуторного размера (l<d<1,5l )Концентрируются, в основном, на поверхности сита и затрудняют проникновение в его поверхности нижнего класса. Кроме того, зерна, близкие по диаметру к величине отверстий сита, но больше их, легко застревают в отверстиях и «заслепляют» сито. Такие зерна называют «затрудняющими». Зерна, диаметр которых больше полуторной величины отверстий сита, не оказывает существенного влияния на перемещение зерен к поверхности сита. В то время как содержание в исходном материале «трудных» и «затрудняющих» зерен напрямую связано с показателем эффективности грохочения. Чем выше содержание этих зерен, чем ниже эффективность грохочения. 2. Влияние влажности материала на процесс грохочения. Всю влагу в процессе грохочения принято делить на: — Внешнюю (гравитационную) влагу, покрывающую пленкой поверхность зерен материала; — Внутреннюю (капиллярную), находящуюся в порах и трещинах; — Химически связанную. Вода, находящаяся в порах и трещинах зерен, а также химически связанная, на процесс грохочения влияния не оказывает. Например, грохочение некоторых каменных углей практически невозможно при влажности их 6%, так как влага, в основном представлена поверхностными пленками, в то же время сильно пористые бурые угли просеиваются даже при влажности до 45%. Заметное влияние на эффективность грохочения оказывает внешняя влага, особенно при грохочении на ситах с мелкими отверстиями. Внешняя влага вызывает слипание мелких частиц зерен между собой, налипание их на крупные куски и замазывание отверстий сит вязким материалом. Кроме того, вода смачивает проволоки сита и может, под действием сил поверхностного натяжения, образовывать пленки, затягивающие отверстия. Все это препятствует расслоению материала по крупности на сетке и затрудняет прохождение мелких зерен через отверстия, в результате чего они остаются в надрешетном продукте. Рис. 16. Зависимость эффективности грохочения от влажности На рис. 16. показана для примера зависимость влаги W. Начальный участок кривой, примерно до W≈8%, представляет собой слабонаклонную прямую. Точка Wкр≈8% является критической, так как после нее наблюдается резкое падение кривой из-за замазывания отверстий сит. В пределах от W≈12% до W≈40% грохочение практически полностью прекращается — почти весь материал остается на сите. Однако при дальнейшем повышении влажности (грохочение с добавкой воды) наступает переход к процессу мокрого грохочения, и эффективность снова повышается. Иначе можно сказать, чем выше влажность исходного материала, тем ниже эффективность грохочения. Однако эффективность мокрого грохочения выше сухого. При мокром грохочении применяются два варианта: грохочение с орошением из брызгал и грохочение в струе воды. При этом расход воды зависит от количества и свойств глинистых примесей, мелочи и пыли и колеблется от 1,5 до 3 м3 на 1 м3 исходного материала. Мокрое грохочение предпочтительнее сухого еще и по условиям борьбы с запыленностью производственных помещений. В некоторых случаях, особенно при грохочении кремнистых руд, прибегают к специальному увлажнению руды (до 4-6%) с целью снижения пылевыделения и улучшения санитарного состояния помещений. Если процесс грохочения влажных руд по технологическим соображениям неприменим, то для повышения эффективности рассева иногда применяют грохоты с электрообогревом сит или прибегают к добавлению поверхностно-активных веществ к влажному материалу, что увеличивает его подвижность и сыпучесть. К Факторам второй группы – конструктивно-механическим — относятся: 1. Влияние формы отверстий сита. В практике грохочения применяют просеивающие поверхности с круглыми, квадратными, прямоугольными (щелевидными) и треугольными отверстиями. Выбор формы отверстия зависит от требований предъявляемым к крупности продуктов грохочения и к производительности грохота. Круглые отверстия по сравнению с другими формами того же номинального размера дают более мелкий по крупности подрешетный продукт. Однако данная смесь соразмерна по крупности и форме зерна, что особенно важно при гравитационных способах обогащения. Практически считают, что максимальный размер зерен, проходящих через круглое отверстие, составляет в среднем около 80-85% от размера зерен, проходящих через квадратное отверстие того же размера. Прямоугольные (щелевидные) отверстия допускают прохождение зерен более крупных по сравнению с круглыми и квадратными отверстиями такого же размера. В практике принимают, что для получения материала такой же крупности, как и при круглых отверстиях, ширина прямоугольных отверстий должна составлять 65-70% диаметра круглого отверстия. Сита и решета с прямоугольными отверстиями по сравнению с рабочими поверхностями, имеющими квадратные и круглые отверстия, обладают существенным преимуществом – у них больше коэффициент живого сечения, их вес и стоимость меньше, они имеют большую производительность, менее подвержены забиванию при влажном исходном материале. Возможность применения сит с прямоугольными отверстиями ограничивается тем, что на них невозможно получить точные по размеру зерен классы (сорта) материала. В целом можно отметить — эффективность грохочения тем выше, чем больше коэффициент живого сечения сетки (отношение площади отверстий сетки в свету к ее общей площади, выраженное в %). 2. Размер отверстия сетки грохота. При грохочении материала одного и того же гранулометрического состава эффективность рассева тем выше, чем больше размер отверстия, в силу того, что отверстия мелких сеток подвержены процессу забивания крупными зернами. 3. Угол наклона просеивающей поверхности. Влияние наклона рабочей поверхности на условия прохождения зерен через отверстия можно показать на следующем упрошенном примере. Пусть зерно шарообразной формы диаметром D падает отвесно на решето толщиной H С отверстиями величиной l, установленное наклонно под углом α к горизонту (рис. 17). Диаметр свободно проходящего через отверстие зерна буде равен D = Lcosα – hsinα Если α = 450 и H = 1/2, то D = 0,35 l. Следовательно, при данных условиях диаметр максимальных зерен подрешетного продукта составит приблизительно только треть величины отверстий решета. Практически считают, что на наклонном сите вибрационного грохота получится нижний продукт той же крупности, что на горизонтальных, если размер отверстий наклонного сита будет больше размера отверстий горизонтального в 1,15 раза при наклоне в 200 и в 1,25 раза при наклоне 250.
На практике угол наклона принимают в пределах от 15 до 260 для инерционных наклонных грохотов и от 0 до 50 для самобалансных. Наиболее оптимальный угол наклона, обеспечивающий необходимую производительность и эффективность устанавливают экспериментальным Путем.
4. Скорость движения зерен по просеивающей поверхности. Для наглядного представления влияния скорости движения зерен по просеивающей поверхности рассмотрим схематический пример движения одиночного зерна (рис. 18).
Будем считать, что зерно пройдет через отверстие, если скорость V будет такова, что траектория движения центра зерна пресечет верхнюю плоскость решета не дальше точки О1 крайнего положения зерна. В точке О1 зерно прижато к верхней кромке отверстия и опрокидывающий момент равен нулю, так как длина плеча равна нулю. Если скорость движения зерна по решету будет больше V, то траектория полета будет выше линии ОО1, появится опрокидывающий момент и возникнет опасность, что зерно не пройдет через отверстие. Оптимальную скорость движения одиночного зерна по поверхности грохочения можно определить по формуле V ≤ ( l — d/2)·√g/d. Для «трудного» зерна, близкого по размеру к величине отверстия, можно принять D≈l. Сделав подстановку в уравнение и заменив G=9810 мм/сек2, получим V ≤ 50·√d Мм/сек. Скорость движения материала по ситу грохота определяет его производительность как транспортирующего аппарата. Доказано, что чем выше скорость движения зерна по поверхности грохочения, тем ниже эффективность, поскольку снижается вероятность попадания зерна в отверстия сетки. Вследствие сложности явлений, происходящих на сите грохота, оптимальная скорость движения материала по ситу устанавливается опытным путем при регулировке грохота. Во многих случаях скорость движения материала регулируется изменением угла наклона короба грохота. |